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Abstract In this paper, we investigate the numerical solutions of one dimensional
modified Burgers’ equation with the help of Haar wavelet method. In the solution
process, the time derivative is discretized by finite difference, the nonlinear term is
linearized by a linearization technique and the spatial discretization is made by Haar
wavelets. The proposed method has been tested by three test problems. The obtained
numerical results are compared with the exact ones and those already exist in the
literature. Also, the calculated numerical solutions are drawn graphically. Computer
simulations show that the presented method is computationally cheap, fast, reliable
and quite good even in the case of small number of grid points.

Keywords Haar wavelet method · Modified Burgers’ equation · Linearization ·
Finite differences · Numerical solution

1 Introduction

Burgers’ equation [1,2] attracted much attention in the past few years, a variety of
numerical solutions established for the solution of the problem. Different forms of
the Burgers’ equation can be used in various scientific areas such as, plasma physics,
solid state physics, optical fibers, biology, fluid dynamics, chemical kinetics etc. The
purpose of this paper is to get numerical solutions with the aid of Haar wavelet method
for nonlinear partial differential equations of the following forms

ut + unux = νuxx , a ≤ x ≤ b, t ≥ 0 (1)
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1 Department of Mathematics, İnonu University, Malatya, Turkey
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and

ut + (V + u) ux = νuxx , −∞ ≤ x ≤ +∞, t > 0 (2)

with the initial condition

u(x, 0) = g(x), x ∈ [a, b]

and the boundary conditions

u(a, t) = f1(t), u(b, t) = f2(t), t ∈ [0, T ]

where u(x, t) represents the velocity for spatial dimension x and time t , ν is a positive
constant showing the kinematic viscosity of the fluid, V is a positive constant and n
is a positive parameter. For n = 1, Eq. (1) corresponds to the well known Burgers’
equation which was first introduced by Bateman [1]. Later, Burgers [2] applied this
equation to the mathematical model for the turbulence, due to his extensive works
on this model, it is called Burgers’ equation. Burgers’ equation was solved by both
Hopf [3] and Cole [4] analytically and independently for arbitrary initial conditions.
Since these solutions involve infinite series, they may converge very slowly for small
values of viscosity coefficients. Also, in many cases these solutions will fail for ν <

0.01, which corresponds to shock waves. Because of the nonlinear convection term
and the occurrence of the viscosity term, Burgers’ equation shows similar features
with Navier-Stokes equation. Hence, Burgers’ equation has been used as a model for
the Navier-Stokes equation. Because of the complexity in obtaining the analytical
solutions many researchers have used numerical methods [5–8].

For n ≥ 2, the Eq. (1) is called modified Burgers’ equation (MBE). The cases to
be studied in which n = 2 and n = 3 are taken will be denoted hereafter as MBE2
and MBE3, respectively. The Eq. (2) will be denoted hereafter as MBE4 and it was
proposed in [9] to judge whether the numerical method has the ability to resolve the
large gradient regions. The MBE equation has been solved by several researchers
both analytically and numerically. Ramadan and El-Danaf [10] applied collocation
method with quintic splines, Ramadan et al. [11] used the collocation method with
septic splines, Saka and Dag [12] applied time and space splitting techniques and then
employed the quintic B-spline collocation method, Roshan and Bhamra [13] used
the Petrov–Galerkin method, Irk [14] employed Crank-Nicolson central differencing
scheme for the time and B-spline functions for the space, Brastos [15–17] used various
finite difference based methods, Temsah [18] applied El-Gendi method, Grienwank
and El-Danaf [19] used a non-polynomial spline based method. Duan et al. [20] used
a lattice Boltzmann model. More recently, Zhang et al. [21] have solved the equation
by the local discontinuous Galerkin method.

The wavelet methods have become matter of attention lately in solving differential
equations numerically, theywere first applied for solving differential equations in early
1990s. Chen and Hsiao [22] introduced a method to solve ordinary differential equa-
tions based on the Haar wavelets. They recommended to expand the highest derivative
of the function appearing in the differential equation into Haar series. Recently, many
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authors have used Haar wavelet method for solving ordinary and partial differential
equations. Lepik applied this method to several problems, solved nonlinear ordinary
differential equations and diffusion equation in [23], Burgers’ and Sine-Gordon equa-
tions in [24] and Poisson equation in [25]. Celik [26] solved Burger–Huxley equation
and then solvedmagnetohydrodynamic flow equation in [27]. Jiwari [28] solved Burg-
ers’ equation by a Haar wavelet quasilinearization. Kaur et al. [29] have used Haar
wavelet method to solve Lane–Emden equations arising in astrophysics. Zhi Shi et
al. [30] applied Haar wavelet method to solve 2D and 3D Poisson equations and bi-
harmonic equations. In this study, we investigate the numerical solution of the MBE
using Haar wavelet method.

This paper is organized as follows. In Sect. 2, preliminaries about the Haar wavelets
are given. In Sect. 3, we show how to use the Haar wavelet method for MBE. The
numerical results obtained by the proposed method for three test problems, tabulated
and depicted graphically, in Sect. 4. Finally we conclude the paper in Sect. 5.

2 Haar wavelets

Wavelet analysis is a very useful technique to its solve mathematical problems.
Wavelets, especially Haar wavelet family is favored by researchers because of its
simplicity. The Haar wavelet family for x ∈ [0, 1] is defined as follows:

hi (x) =

⎧
⎪⎨

⎪⎩

1, for x ∈ [ζ1, ζ2)
−1, for x ∈ [ζ2, ζ3]
0, elsewhere

(3)

where

ζ1 = k

m
, ζ2 = k + 0.5

m
, ζ3 = k + 1

m
.

Here m and k have integer values as m = 2 j , j = 0, 1, . . . , J and J show the
resolution of the wavelet and k = 0, 1, . . . ,m − 1 is the translation parameter. The
index of hi in Eq. (3) is calculated by i = m + k + 1. For the minimum values of
m = 1, k = 0 we have i = 2; the maximum value of i will be i = 2M = 2J+1; where
J is the maximum resolution of the wavelet. We also have i = 1 corresponding to the
scaling function of Haar wavelet family i.e. h1(x) = 1 in [0, 1].

To solve partial differential equations of any order with Haar wavelet Method, we
need the following integrals

pi,1(x) =
∫ x

0
hi (x)dx

pi,n+1(x) =
∫ x

0
pi,n(x)dx, n = 1, 2, 3, . . .
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These integrals can be calculated analytically with the help of Eq. (3); by doing so we
get the following equations

pi,1(x) =

⎧
⎪⎨

⎪⎩

x − ζ1, for x ∈ [ζ1, ζ2)
ζ3 − x, for x ∈ [ζ2, ζ3]
0, elsewhere

(4)

pi,2(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(x−ζ1)
2

2 , for x ∈ [ζ1, ζ2)
1

4m2 − (ζ3−x)2

2 , for x ∈ [ζ2, ζ3)
1

4m2 , for x ∈ [ζ3, 1]
0, elsewhere

(5)

Because of the orthogonality of Haar wavelets; i.e.

∫ 1

0
hi (x)hl(x)dx =

{
2− j , for i = l = 2 j + k

0, for i �= l

they are very good for constructing transform basis. Any square integrable function
y(x) in the interval [0, 1] can be expressed as

y(x) =
∞∑

i=1

ci hi (x), i = 2 j + k, j ≥ 0, 0 ≤ k < 2 j ,

where the coefficients ci are determined by [22,31]

ci = 2 j
∫ 1

0
y(x)hi (x)dx .,

Even though the series expansion of y(x) involves infinite terms, if y(x) is a piecewise
constant or it may be approximated as a piecewise constant for each sub-interval, in
that case y(x) can be terminated at finite terms. That means y(x) can be expressed as
follows

y(x) =
2M∑

i=1

ci hi (x) = cT(2M)h(2M)(x),

where the coefficients cT(2M) and h(2M)(x) are defined as

cT(2M) = [c1, c2, . . . , c(2M)]
h(2M)(x) = [h1(x), h2(x), . . . , h(2M)(x)]T

here T denotes transpose and M = 2 j .
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3 Application of the Haar wavelet method to the MBE

In this section, we present the application of Haar wavelet method to get numerical
solutions of MBE equations.

3.1 MBE2 Equation

ut + u2ux = νuxx

Firstly, to discretize this equation, we substitute ut by forward finite difference and
also use time average for u2ux and uxx terms, we get the following relation

u j+1 − u j

�t
+

(
u2ux

)

j+1 + (
u2ux

)

j

2
= ν

(uxx ) j+1 + (uxx ) j
2

.

If we use the linearization 2u j+1u j (ux ) j + u ju j (ux ) j+1 − 2u ju j (ux ) j which is
similar to the one used in Rubin-Graves [32] instead of nonlinear term u2ux and
simplify the above equation, we obtain

u j+1 + �t

2

(
2u j+1u j (ux ) j + u ju j (ux ) j+1

) − ν
�t

2
(uxx ) j+1

= u j − �t

2

(
u2ux

)

j
+ ν

�t

2
(uxx ) j + �t

(
u ju j (ux ) j

)
(6)

with the initial condition

u0 = g(x) (7)

and boundary conditions

u j+1(a) = f1(t j+1), u j+1(b) = f2(t j+1), j = 0, 1, . . . , N − 1 (8)

where u j+1 is the solution of Eq. (6) at the j−th time step.

3.2 MBE3 Equation

Secondly, we will consider following equation

ut + u3ux = νuxx .

For discretizing this equation, we substitute ut by forward finite difference and also
use time average for uxx term, so we get the following relation

u j+1 − u j

�t
+

(
u3ux

)

j
= ν

(uxx ) j+1 + (uxx ) j
2
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simplifying the above relation, we obtain

2u j+1 − ν�t (uxx ) j+1 = 2u j − 2�t
(
u3ux

)

j
+ ν�t (uxx ) j (9)

with the initial condition

u0 = g(x)

and boundary conditions

u j+1(a) = f1(t j+1), u j+1(b) = f2(t j+1), j = 0, 1, . . . , N − 1

where u j+1 is the solution of Eq. (9) at the j−th time step.

3.3 MBE4 Equation

Lastly, we will consider the following equation

ut + (V + u) ux = νuxx .

We firstly rewrite the MBE4 as follows

ut + uux = νuxx − Vux

then using forward finite difference for ut and time average for uux and uxx terms,
we get the following relation

u j+1 − u j

�t
+ (uux ) j+1 + (uux ) j

2
= ν

(uxx ) j+1 + (uxx ) j
2

− V (ux ) j .

By using u j+1(ux ) j + u j (ux ) j+1 − u j (ux ) j linearization technique in [32] for the
term uux the above equation can be put in the following form

2u j+1 + �t
(
u j+1(ux ) j + u j (ux ) j+1

) − ν�t (uxx ) j+1

= 2u j − 2�tV (ux ) j + ν�t (uxx ) j (10)

with the initial condition

u0 = g(x)

and boundary conditions

u j+1(a) = f1(t j+1), u j+1(b) = f2(t j+1), j = 0, 1, . . . , N − 1

where u j+1 is the solution of Eq. (10) at the j−th time step.
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3.4 Haar wavelet method for spatial-discretization

In a similar manner of the Lepik [23–25], we assume that (uxx ) j+1 can be expanded
in terms of Haar wavelets as

(uxx ) j+1 (x) =
2M∑

i=1

ci hi (x) = cT h2M (x) (11)

where cT is a row vector. Integrating Eq. (11) with respect to x from 0 to x , we get
the following equation

(ux ) j+1 (x) = (ux ) j+1 (0) +
2M∑

i=1

ci pi,1(x). (12)

In Eq. (12), (ux ) j+1 (0) is unknown so to find it, we need to integrate Eq. (12) from 0
to 1. After that, using boundary conditions (8) we get

(ux ) j+1 (0) = f2(t j+1) − f1(t j+1) −
2M∑

i=1

ci pi,2(1). (13)

Substituting (13) into Eq. (12) results in the following equation

(ux ) j+1 (x) =
2M∑

i=1

ci pi,1(x) + f2(t j+1) − f1(t j+1) −
2M∑

i=1

ci pi,2(1). (14)

Now, if we integrate again Eq. (14) from 0 to x, we get

u j+1(x) = f1(t j+1) + x
(
f2(t j+1) − f1(t j+1)

) +
2M∑

i=1

ci pi,2(x) − x
2M∑

i=1

ci pi,2(1)

(15)

where

pi,2(1) =
{
0.5 if i = 1

1
4m2 if i > 1

is obtained from Eq.(5).

3.5 Haar wavelet method for time-discretization

Substituting (15), (14) and (11) into the Eq. (6) and discretisizing the results at the
collocation points xl = l−0.5

2M , l = 1, 2, . . . , 2M we get following equation forMBE2:
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f1(t j+1) + xl
(
f2(t j+1) − f1(t j+1)

) +
2M∑

i=1

ci pi,2(xl) − xl

2M∑

i=1

ci pi,2(1)

+ �t

2

(

2
[
f1(t j+1) + xl

(
f2(t j+1) − f1(t j+1)

)

+
2M∑

i=1

ci pi,2(xl) − xl

2M∑

i=1

ci pi,2(1)

]

u j (ux ) j

)

+ �t

2

(

u ju j

[
2M∑

i=1

ci pi,1(xl) + f2(t j+1) − f1(t j+1) −
2M∑

i=1

ci pi,2(1)

])

−ν
�t

2

(
2M∑

i=1

ci hi (xl)

)

= u j − �t

2

(
u2ux

)

j
+ ν

�t

2
(uxx ) j + �t

(
u ju j (ux ) j

)
.

This system of algebraic equations is solved by using an appropriate software and the
wavelet coefficients cT are found, and then these are used in (15), (14) and (11) to find
the new values of u, ux and uxx at each time level.We continue the iteration process in
this way until the desired time level is reached. For this purpose, the following initial
conditions are needed

u0(xl) = g(xl)

(ux )0 (xl) = g′(xl)
(uxx )0 (xl) = g′′(xl).

In a similar way to MBE2, if we substitute (15), (14) and (11) into each of the
Eqs. (9), (10) and discretize the results at the collocation points we get system of
equations for MBE3 and MBE4 respectively. Then by solving the newly obtained
systems, the wavelet coefficients cT are obtained. Now we can substitute these coef-
ficients into each of the Eqs. (15), (9) and (10) calculate approximate solutions
successively.

4 Numerical results

Numerical computations have been done with the free software package GNU Octave
and graphical outputs were generated by Matplotlib package [33]. In order to show
the performance of the suggested method as compared with the exact solution, we
considered the error norms L2 and L∞ defined by

L2 =
√

�x
∑2M

i=1

∣
∣uexacti − unumi

∣
∣2

L∞ = max
i

∣
∣uexacti − unumi

∣
∣ .
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Table 1 Comparison of the error norms for obtained results and other researchers’ results for �t = 0.01
and ν = 0.01

�x t = 2 t = 6 t = 10

L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

Haar wavelet 1/16 0.34748 0.75978 0.32246 0.46335 0.54160 1.16480

QBCM [10] 1/200 0.52308 1.21698 0.49023 0.72249 0.64007 1.28124

SBCM [11] 1/50 0.79043 1.70309 0.51672 0.76105 0.80026 1.80239

QBCA1 [12] 1/200 0.37932 0.81680 0.32602 0.52579 0.54701 1.28125

QBCA2 [12] 1/200 0.37951 0.82212 0.32427 0.52579 0.54354 1.28125

SBCM1 [14] 1/200 0.38489 0.82934 – – 0.54826 1.28127

SBCM2 [14] 1/200 0.39078 0.82734 – – 0.54612 1.28127

4.1 MBE2 Equation

Consider MBE2 which has the following analytic solution [11]:

u(x, t) = x/t

1 + (√
t/c0

)
exp(x2/4νt)

, t ≥ 1, 0 ≤ x ≤ 1.

where 0 < c0 < 1. We take the following boundary conditions

u(0, t) = u(1, t) = 0

and extract initial condition from analytic solution for t = 1 as follows

u(x, 1) = x

1 + (1/c0) exp(x2/4ν)
, 0 ≤ x ≤ 1.

We have compared our results with the other results existing in the literature we
take c0 = 0.5 and tested the proposed method for various values of ν = 0.01, 0.005,
0.001 at t = 2, 6, 10 using different time steps �t = 0.01, 0.001 . In Table 1,
we show a comparison of the values of error norms obtained by the present method
for �x = 1/16, �t = 0.01 and ν = 0.01 with the other studies for the values
of �x = 1/200. It is clearly seen from the table that even though �x is used as
1/16, error norms obtained from the results for each time are smaller than those given
in Ramadan and Danaf [10], Saka and Dag [12] using Quintic B-Spline collocation
method, Ramadan et al. [11] and Irk [14] using sextic B-spline collocation method.
In Fig. 1, we depict the numerical results and error graphics for 2M = 64. It can be
easily seen from Fig. 1b that maximum error is getting larger at the right boundary
when t becomes approximately greater than 3, which means the chosen interval [0, 1]
is not suitable for this problem, this can also be understood from the analytic solution.
To overcome this problem, we extended the interval to [0, 1.3] and gave the results on
Table 2 and compared with [14].
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(a) (b)

Fig. 1 Numerical solutions and errors for �x = 1/64, �t = 0.01 and ν = 0.01. a Numerical solutions
for different times. b Errors for different times

Table 2 Comparison of the error norms for obtained results and Ref. [14] for �t = 0.01 and ν = 0.01 for
0 ≤ x ≤ 1.3

�x t = 2 t = 6 t = 10

L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

Haar Wavelet 1/16 0.29252 0.72890 0.24311 0.45606 0.22321 0.32374

SBCM1 [14] 1/260 0.38489 0.82934 – – 0.25586 0.32723

SBCM2 [14] 1/260 0.39078 0.82734 – – 0.25259 0.32337

Fig. 2 Errors for �x = 1/64,
�t = 0.01 and ν = 0.01 for
0 ≤ x ≤ 1.3

In Fig. 2, we give the errors for the extended interval [0, 1.3], as it can be seen from
the figure the errors are smaller than for the interval [0, 1] on the right boundary. In
Table 3, we show a comparison of the values of error norms obtained by the present
method for �x = 1/16 with the other studies for the values of �x=1/200 for the
same values of �t = 0.01 and ν = 0.005. It is clearly seen from the table that the
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Table 3 Comparison of the error norms for obtained results and other researchers’ results for �t = 0.001
and ν = 0.005

�x t = 2 t = 6 t = 10

L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

Haar wavelet 1/16 0.19508 0.54059 0.16489 0.32340 0.14055 0.22598

QBCM [10] 1/200 0.25786 0.72264 0.22569 0.43082 0.18735 0.30006

SBCM1 [14] 1/200 0.22890 0.58623 – – 0.14042 0.23019

SBCM2 [14] 1/200 0.23397 0.58424 – – 0.13747 0.22626

(a) (b)

Fig. 3 Numerical solutions and errors for �x = 1/64, �t = 0.001 and ν = 0.005. a Numerical Solutions
for different times. b Errors for different times

error norms L2 and L∞ obtained for each time are smaller than those given in Refs.
[10,14]. Again in Fig. 3, we present the the numerical results and error graphics for
2M = 64. As it is seen from the figure, with the incrementation of time the errors are
getting smaller.

In Table 4, we show a comparison of the values of error norms obtained by the
present method for �x = 1/16, �t = 0.01 and ν = 0.001 with the other studies for
the values of �x=1/200. As it is seen from the table, the results obtained from the
present method are better than those obtained in Refs. [10,11] while as good as those
obtained in Refs. [12,14]. Again in Fig. 4, we present both the numerical results and
error graphics for 2M = 64, respectively.

4.2 MBE3 Equation

We consider MBE3with the boundary conditions u(0, t) = u(π, t) = 0 and the initial
condition

u(x, 0) = A sin x

where A = 1.
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Table 4 Comparison of the error norms for obtained results and other researchers’ results for �t = 0.01
and ν = 0.001

�x t = 2 t = 6 t = 10

L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

Haar wavelet 1/16 0.11093 0.43656 0.06151 0.16468 0.04816 0.11807

QBCM [10] 1/200 0.06703 0.27967 0.06046 0.17176 0.05010 0.12129

SBCM [11] 1/50 0.18355 0.81862 0.08142 0.21348 0.05512 0.13943

QBCA1 [12] 1/200 0.06811 0.26094 0.04942 0.14810 0.04067 0.10264

QBCA2 [12] 1/200 0.06953 0.27283 0.04917 0.15656 0.04000 0.10835

SBCM1 [14] 1/200 0.06843 0.26233 – – 0.04080 0.10295

SBCM2 [14] 1/200 0.07220 0.25975 – – 0.03871 0.09882

(a) (b)

Fig. 4 Numerical solutions and errors for �x = 1/64, �t = 0.01 and ν = 0.001. a Numerical Solution.
b Errors for different times

To compare our results with the other results existing in the literature, we take
�t = 0.01, ν = 0.005 and J = 6 for different values values of �x and t . The
results are tabulated in Table 5 in which the analytic form of the asymptotic solutions
constructed by Sachdev et al. [34] who constructed large-time asymptotic solution of
the modified Burgers’ equation with sinusoidal initial conditions by using a balancing
argument. It is clearly seen from the table that our results are in good agreement with
those available in the literature. Among others, first of all, for t > 100 the presently
proposed method yields more accurate results than the corresponding ones given by
Bratsos [16] who proposed a finite-difference scheme based on fourth-order rational
approximants to the matrix-exponential term in a two-time level recurrence relation.
Secondly, for values of t greater than 200, the error norms L∞ computed in the present
method are smaller than those given byDuan et. al. [20]who developed a special lattice
Boltzmann model to solve the modified Burgers’ equation. Lastly, the error norms L2
for values of t greater than 250 are also smaller than those given by Duan et. al. in the
same study [20].
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Table 5 Comparison of L2 and L∞ error norms at different times

�x t 100 150 200 250

Haar wavelet 1/128 L2 × 102 3.3032 0.60539 0.20656 0.076872

L∞ × 102 3.4523 0.67128 0.18567 0.064929

[16] 1/1000 L2 × 102 3.2761 0.61258 0.22273 0.091238

L∞ × 102 3.3976 0.68400 0.20416 0.083351

[20] 1/100 L2 × 102 – 0.3227 0.09912 0.05031

L∞ × 102 – 0.5172 0.1671 0.1400

�x t 300 350 400 450

Haar wavelet 1/128 L2 × 102 0.028506 0.010561 0.0039581 0.0015662

L∞ × 102 0.024053 0.0090748 0.0035684 0.0015175

[16] 1/1000 L2 × 102 0.041341 0.023070 0.016168 0.012836

L∞ × 102 0.039559 0.021860 0.014160 0.010361

[20] 1/100 L2 × 102 0.05939 0.06940 0.07567 0.07990

L∞ × 102 0.1452 0.1488 0.1513 0.1531

Fig. 5 Numerical solutions of
MBE3 with �t = 0.01,
ν = 0.005 at
t = 100, 200, 300, 400

It can be easily seen from Fig. 5 that for t > 100 the numerical solution and the
exact solution are in good agreement. For t > 200 the numerical solution and the
exact solution are not distinguishable.

4.3 MBE4 Equation

From the studies of Vasilyev and Paolucci [9] and Basdevant et al. [35] the efficiency
of a numerical method can be judged from its ability to resolve the large gradient
regions that occur in the solution. So to test the present method we solve MBE4 which
combined with the initial condition
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Fig. 6 Numerical solutions of
MBE4 with V = 1, ν = 0.01,
�t = 0.001 and x0 = −0.25 at
t = 0.1, 0.3, 0.5

u(x, 0) = − tanh

(
x − x0
2ν

)

and time dependent boundary conditions

u(−1, t) = − tanh

(−1 − x0 − V t

2ν

)

, u(1, t) = − tanh

(
1 − x0 − V t

2ν

)

Note that the original problem is given on domain −∞ < x < ∞ but for numerical
computations we take the domain as −1 ≤ x ≤ 1. The exact solution of the MBE4 is
as follows:

u(x, t) = − tanh

(
x − x0 − V t

2ν

)

For V = 1, ν = 0.01, x0 = −0.25 and J = 6 the numerical solutions are given in
Fig. 6.

It can be seen from Fig. 6 that the numerical solution and the exact solution are in
good agreement with each other and also by increasing wavelet resolution J we can
get more accurate results.

5 Conclusion

In conclusion, in this paper, Haar wavelet method is used to get numerical solutions of
modified Burgers’ equation. The obtained solutions are compared with the exact ones
and with those available in the literature found by other researchers. The comparison
shows that the present method is competitive with other methods. The results of the
present method are better in spite of using less collocation points and a simpler scheme
when compared to others. The proposed method can safely and quickly be used for
the solution of a wide range of similar problems.
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